## Bioimage Informatics: Computer Vision for Biology

#### Luis Pedro Coelho

Institute for Molecular Medicine, Lisbon Mhlanga Lab

November 2011





"The real measure of success is the number of experiments that can be crowded into twenty-four hours." — Thomas Edison

# High Throughput High Content Biology

### Lab Technologies

- Liquid handling robots
- Multi-well plates
- Automated microscopes

One can generate thousands of images per hour.



#### This is the raw data.

## Image Processing

### Typical Tasks

- Denoising
- Particle detection
- Segmentation
- ..

At the end of these steps, you still have an image which must be interpreted by computer or human.

## Image Processing

### Typical Tasks

- Denoising
- Particle detection
- Segmentation

• ..

At the end of these steps, you still have an image which must be interpreted by computer or human.

I am **not discussing** any of this today. See **Alexandre**'s talk.

## Image Processing

### Typical Tasks

- Denoising
- Particle detection
- Segmentation

• . .

At the end of these steps, you still have an image which must be **interpreted by computer** or human.

I am **not discussing** any of this today. See **Alexandre**'s talk.



### Classification

Given labeled data, can we learn a classification model?

#### Labeled Data

A small dataset of images with **labels**. The goal is to then **assign labels** to other images.

## Example



Luis Pedro Coelho (Institute for Molecular Medicine) \* Bioimage Informatics \* Nov 2011 (7/43

## Example



Luis Pedro Coelho (Institute for Molecular Medicine) \star Bioimage Informatics \star Nov 2011 (7/43



### Feature Based Approach

- Represent the image by a small number of features.
- Proposed by Boland and Murphy (1998) for subcellular location.
- Very successful for many applications.



#### • A feature is any number you can compute from the image.

- For a good features, you wish to simmultaneously
  - Capture the important variations.
    - Disregard the unimportant variations.
- These are naturally problem dependent,
- but machine learning helps.



#### 10 4 6 7 5 3 10



#### **10 4** 6 7 **3** 10



#### 7 10 4 5 3 10



- For each  $3 \times 3$  region:
- Find the maximum and the minimum.
- Subtract the minimum from the maximum.
- You end up with a number per region (per pixel).



- For each  $3 \times 3$  region:
- Find the maximum and the minimum.
- Subtract the minimum from the maximum.
- You end up with a number per region (per pixel).

For an image level feature, average this number



- For each  $3 \times 3$  region:
- Find the maximum and the minimum.
- Subtract the minimum from the maximum.
- You end up with a number per region (per pixel).

For an image level feature, average this number

- What is this feature sensitive to?
- What is this feature invariant to?

Example





Example





#### Alternatives

- Manually design features by trial and error
- Machine learning approach

#### Alternatives

- Manually design features by trial and error
- Machine learning approach

#### Machine Learning

- Use many generic features (tens to hundreds)
- Automatically learn which features are important



- Texture (Haralick, Gabor, ...)
- Edginess, smoothness, ...
- Local features, ...

• ...

The literature is very vast.



## Classifiers



## Classifiers





Luis Pedro Coelho (Institute for Molecular Medicine) \* Bioimage Informatics \* Nov 2011 (16 / 43



|        | Cyto | Cytosk | Lyso | РМ | Mito | Ν   | NO |
|--------|------|--------|------|----|------|-----|----|
| Cyto   | 115  | 10     | 3    | 15 | 8    | 4   | 0  |
| Cytosk | 14   | 147    | 3    | 2  | 30   | 1   | 0  |
| Lyso   | 3    | 1      | 14   | 0  | 50   | 0   | 1  |
| РM     | 31   | 6      | 2    | 9  | 2    | 1   | 0  |
| Mito   | 22   | 30     | 15   | 0  | 126  | 6   | 1  |
| Ν      | 25   | 1      | 0    | 1  | 0    | 219 | 9  |
| NO     | 1    | 0      | 0    | 0  | 1    | 16  | 95 |

Average: 72%

## HeLa Dataset

|     | dna | er | gi | gii |    | m  | n  | а  | е  | t  |  |
|-----|-----|----|----|-----|----|----|----|----|----|----|--|
| dna | 86  | 0  | 1  | 0   | 0  | 0  | 0  | 0  | 0  | 0  |  |
| er  | 0   | 84 | 0  | 0   | 0  | 1  | 0  | 0  | 0  | 1  |  |
| gi  | 0   | 0  | 84 | 2   | 0  | 1  | 0  | 0  | 0  | 0  |  |
| gii | 0   | 0  | 4  | 79  | 0  | 1  | 0  | 0  | 1  | 0  |  |
| I   | 0   | 0  | 1  | 0   | 72 | 0  | 1  | 0  | 10 | 0  |  |
| m   | 0   | 3  | 1  | 0   | 1  | 64 | 0  | 0  | 3  | 1  |  |
| n   | 0   | 0  | 1  | 1   | 0  | 0  | 78 | 0  | 0  | 0  |  |
| а   | 0   | 0  | 0  | 0   | 0  | 0  | 0  | 98 | 0  | 0  |  |
| е   | 0   | 2  | 3  | 0   | 5  | 1  | 0  | 0  | 79 | 1  |  |
| t   | 0   | 1  | 0  | 0   | 0  | 1  | 0  | 0  | 1  | 88 |  |

Average: 94%

## HeLa Dataset

|     | dna | er | gi | gii |    | m  | n  | а  | е  | t  |  |
|-----|-----|----|----|-----|----|----|----|----|----|----|--|
| dna | 86  | 0  | 1  | 0   | 0  | 0  | 0  | 0  | 0  | 0  |  |
| er  | 0   | 84 | 0  | 0   | 0  | 1  | 0  | 0  | 0  | 1  |  |
| gi  | 0   | 0  | 84 | 2   | 0  | 1  | 0  | 0  | 0  | 0  |  |
| gii | 0   | 0  | 4  | 79  | 0  | 1  | 0  | 0  | 1  | 0  |  |
|     | 0   | 0  | 1  | 0   | 72 | 0  | 1  | 0  | 10 | 0  |  |
| m   | 0   | 3  | 1  | 0   | 1  | 64 | 0  | 0  | 3  | 1  |  |
| n   | 0   | 0  | 1  | 1   | 0  | 0  | 78 | 0  | 0  | 0  |  |
| а   | 0   | 0  | 0  | 0   | 0  | 0  | 0  | 98 | 0  | 0  |  |
| е   | 0   | 2  | 3  | 0   | 5  | 1  | 0  | 0  | 79 | 1  |  |
| t   | 0   | 1  | 0  | 0   | 0  | 1  | 0  | 0  | 1  | 88 |  |

Average: 94% Human performance: 83%

#### (Murphy et al., 2003)



- Comparable to or better than human!
- Better with multiple replicates.
- Classification times: a few seconds per image.


## Other Typical Classification Problems

- Phenotype in a screen
- Stem cell differentiation
- . .

## Segmentation as Classification



#### (Coelho et al., 2009)

(Chen et al., 2011)

# Learning to Count





## (Lempitsky & Zisserman, 2010)



- Computers can do very well at classification.
- Flexible tool if you have the training data.



# Previously reported methods work well for simple classes, like "endosomes" or "mitochondria."



Previously reported methods work well for simple classes, like "endosomes" or "mitochondria." What if a protein is present in both endosomes and mitochondria?

## **Mixture Pattern Example**



# Mixture Pattern Example



# **Mixture Pattern Example**





Given examples of **pure patterns** and a mixed pattern, can we identify how much each pure pattern contributes to the mixture?



Given examples of **pure patterns** and a mixed pattern, can we identify how much each pure pattern contributes to the mixture?

Using an object-based approach, we can solve this.

(T. Zhao et al., 2005) (T. Peng, G. Bonami et al., 2010)

# **Unsupervised Unmixing Problem**



#### What if we don't know the pure patterns?

Luis Pedro Coelho (Institute for Molecular Medicine) \star Bioimage Informatics \star Nov 2011 (27/43

# **Unsupervised Unmixing Problem**



What if we don't know the pure patterns?

Given a collection of **untagged** images, can we **identify** the pure and mixed patterns?





 $\mathbf{r}$ 



0



# **Results: Mixing Bases**







#### (Coelho et al., 2010)

# **Results: Mixing Fractions**



# **Results: Mixing Fractions**



(Coelho et al., 2010)

• Pattern unmixing works both in supervised and unsupervised modes.

# **Other Heterogeneous Problems**



## Problems

- Multiple cells in a field
- Multiple cells in a tissue
- . .



## Approach

- Segment cells
- Classify cells independently
- Group classifications

## (Altschuler & Wu, 2010)

# **Positive Example**







# **Negative Example**



## Data Integration

- Multiple image types
- Non-image data

(This was my PhD dissertation, but it is still unpublished)

## Active Learning

- Let the computer choose the experiment.
- Cut the human out of the loop.

(King et al., 2009)

(Murphy, 2011)



- Automated methods can give better answers than humans
- (if the question is well defined)
- Interpretation need not be the bottleneck even in high-throughput settings
- Not so many user friendly tools available
- Collaboration can get you an expert
- Start your collaboration before you collect data


## Prof. Robert F. Murphy

Dr. Tao Peng Aabid Shariff Dr. Estelle Glory-Afshar Dr. Elvira Garcia-Osuna Armaghan Naik Joshua Kangas Prof. Gustavo Rohde Cheng Chen

**Funding Agencies** Fulbright Program National Institutes of Health Fundação Para Ciência e Tecnologia Siebel Scholars Foundation

thank you...



## These slides (and complete references to all papers mentioned) are available at http://luispedro.org/talks/2011/embo