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High Throughput Science ?\*L

"The real measure of success is the number of experiments
that can be crowded into twenty-four hours."
— Thomas Edison




High Throughput High Content Biology ’\?L
v

Lab Technologies

@ Liquid handling robots
@ Multi-well plates
@ Automated microscopes

One can generate thousands of images per hour.
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Image Processing
a’\

Typical Tasks

@ Denoising

@ Particle detection
@ Segmentation

° .

At the end of these steps, you still have an image
which must be interpreted by computer or human.
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Typical Tasks

@ Denoising

@ Particle detection
@ Segmentation

° .

At the end of these steps, you still have an image
which must be interpreted by computer or human.

| am not discussing any of this today.
See Alexandre's talk.
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First Task h&

Classification
Given labeled data, can we learn a classification model?

Labeled Data
A small dataset of images with labels.
The goal is to then assign labels to other images.
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Example ,\
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Features
ML

Feature Based Approach

@ Represent the image by a small number of features.

@ Proposed by Boland and Murphy (1998) for subcellular
location.

@ Very successful for many applications.
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Features
ML

@ A feature is any number you can compute from the image.

@ For a good features, you wish to simmultaneously

@ Capture the important variations.
@ Disregard the unimportant variations.

@ These are naturally problem dependent,
@ but machine learning helps.




Example Feature
M
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Example Feature
M
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Algorithm
N

@ For each 3 x 3 region:

@ Find the maximum and the minimum.

@ Subtract the minimum from the maximum.

@ You end up with a number per region (per pixel).
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Algorithm *\’L

@ For each 3 x 3 region:

@ Find the maximum and the minimum.

@ Subtract the minimum from the maximum.

@ You end up with a number per region (per pixel).

For an image level feature, average this number

@ What is this feature sensitive to?
@ What is this feature invariant to?

formatics * Nov 2011
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Complex Examples
ML

Alternatives

@ Manually design features by trial and error
@ Machine learning approach
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Complex Examples
2\"\

Alternatives

@ Manually design features by trial and error
@ Machine learning approach

Machine Learning

@ Use many generic features (tens to hundreds)
@ Automatically learn which features are important
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Typical Features
N

@ Texture (Haralick, Gabor, ...)
@ Edginess, smoothness, ...

@ Local features, ...

o .

The literature is very vast.

Luis Pedrc g e 0 fi Nov 2011 (14 /43)



Luis Pedro Co r ar Medicine) Informatics Nov 2011 15/43)



Luis Pe r lar Medicine) Bioimage Informatics Nov 2011



Luis Pedro Co r ar Medicine) Bioimage Informatics Nov 2011



Luis Pedro Coelho (Institute for Molecular Medicine) * Bioimage Informatics * Nov 2011 (15/43)



Luis Pedro Coelho (Institute for Molecular Medicine) * Bioimage Informatics * Nov 2011 (15/43)



Luis Pedro Coelho (Institute for Molecular Medicine) * Bioimage Informatics * Nov 2011 (15/43)



Luis Pedro Coelho (Institute for Molecular Medicine) * Bioimage Informatics * Nov 2011 (15/43)



Classifiers




Classifiers ,\’
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Results

N

Cyto Cytosk Lyso PM Mito N NO

Cyto 115 10 3 15 8 4 0
Cytosk 14 147 3 2 30 1 0
Lyso 3 1 14 0 50 0 1

PM 31 6 2 9 2 1 0
Mito 22 30 15 0 126 6 1

N 25 1 0 1 0 219 9

NO 1 0 0 0 1 16 95

Average: 72%
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HelLa Dataset

&
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Average: 94%
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Average: 94%
Human performance: 83%

(Murphy et al., 2003)
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Typical Results
N

@ Comparable to or better than human!
@ Better with multiple replicates.
@ Classification times: a few seconds per image.
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Other Problems ?\-,'L

Other Typical Classification Problems

@ Phenotype in a screen
@ Stem cell differentiation
° .

Luis Pedro Co



Segmentation as Classification

(Coelho et al., 2009)

(Chen et al., 2011)
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Learning to Count

(Lempitsky & Zisserman, 2010)
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Conclusions
Y

@ Computers can do very well at classification.
@ Flexible tool if you have the training data.
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Mixture Patterns Classification
N

Previously reported methods work well for simple classes,
like "endosomes” or “mitochondria.”
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Mixture Patterns Classification
N

Previously reported methods work well for simple classes,
like "endosomes” or “mitochondria.”

What if a protein is present in both endosomes and
mitochondria?
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Mixture Pattern Example
N
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Mixture Pattern Example
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Mixture Pattern Example
N
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Supervised Unmixing Problem
N

Given examples of pure patterns and a mixed pattern,
can we identify how much each pure pattern contributes to
the mixture?
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Supervised Unmixing Problem
N

Given examples of pure patterns and a mixed pattern,

can we identify how much each pure pattern contributes to
the mixture?

Using an object-based approach, we can solve this.

(T. Zhao et al., 2005)
(T. Peng, G. Bonami et al., 2010)
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Unsupervised Unmixing Problem
N

What if we don't know the pure patterns?
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Unsupervised Unmixing Problem

What if we don't know the pure patterns?

Given a collection of untagged images,
can we identify the pure and mixed patterns?

*
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Process
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Results: Mixing Bases

(Coelho et al., 2010)
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Results: Mixing Fractions
N
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Results: Mixing Fractions
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Correlation: 91%

(Coelho et al., 2010)
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@ Pattern unmixing works both in supervised and
unsupervised modes.

(31/43)



Other Heterogeneous Problems
N

Problems

@ Multiple cells in a field
@ Multiple cells in a tissue
o .
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Multiple Heterogeneous Cells
N

Approach

Q Segment cells
@ Classify cells independently
© Group classifications

(Altschuler & Wu, 2010)
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Positive Example "\
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Negative Example 'I\
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K-Nearest Neighbour Test
N
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(Henze, 1988)
(T. Zhao et al., 20006)
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K-Nearest Neighbour Test ’\’L

(Henze, 1988)
(T. Zhao et al., 2006)
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K-Nearest Neighbour Test "\’\,

(Henze, 1988)
(T. Zhao et al., 2006)
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Where we are going
ML

Data Integration

@ Multiple image types
@ Non-image data

(This was my PhD dissertation, but it is still unpublished)
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Where we are going
ML

Active Learning

@ Let the computer choose the experiment.
@ Cut the human out of the loop.

(King et al., 2009)

(Murphy, 2011)
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Conclusions & Guidelines ’\?L

Automated methods can give better answers than humans
(if the question is well defined)

Interpretation need not be the bottleneck
even in high-throughput settings

Not so many user friendly tools available
Collaboration can get you an expert
Start your collaboration before you collect data
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These slides (and complete references to all papers
mentioned) are available at
http://luispedro.org/talks/2011/embo
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