Product of two Gaussian probabilistic density functions

Luis Pedro Coelho

April 19, 2013

Abstract

What is this? Since there are a few hits of people who download these files directly from a Google results page, instead of from my website, I add here a small explanation: These files contain derivations which I often use and, before I wrote them down cleanly, would often make small mistakes on (like leaving off a minus sign or such). They are also automatically checked with sage, so that the computer assures that there were no mis-steps in the derivation. This is also why you see code in the derivation instead of just the equations. This is run by sage.

Let's start by defining a few variables:

```
x = var('x')
mu1 = var('mu1')
mu2 = var('mu2')
```

x will be our variable, μ_{1} and μ_{2} the means.

```
s1 = var('s1', latex_name=r'\sigma_1^2', domain='positive')
s2 = var('s2', latex_name=r'\sigma_2^2', domain='positive')
N1, N2 = var('N1 N2')
```

We define σ^{2} as positive.

```
\(\mathrm{Z}(\mathrm{s})=\operatorname{sqrt}(2 * \mathrm{pi} * \mathrm{~s})\)
\(\mathrm{N}(\mathrm{x}, \mathrm{m}, \mathrm{s})=1 . / \mathrm{Z}(\mathrm{s}) * \exp \left(-(\mathrm{x}-\mathrm{m})^{\wedge} 2 /(2 * s)\right)\)
\(\mathrm{N} 1=\mathrm{N}(\mathrm{x}, \mathrm{mu} 1, \mathrm{~s} 1)\)
\(\mathrm{N} 2=\mathrm{N}(\mathrm{x}, \mathrm{mu} 2, \mathrm{~s} 2)\)
```

N 1 is the first normal:

$$
\begin{equation*}
\frac{0.500000000000000 \sqrt{2} e^{\left(-\frac{\left(\mu_{1}-x\right)^{2}}{2 \sigma_{1}^{2}}\right)}}{\sqrt{\pi \sigma_{1}^{2}}} \tag{1}
\end{equation*}
$$

which is not in canonical form because of sage simplification, but we can recognise the normal distribution.

```
product = N1 * N2
```

The product as a Gaussian is readily obtained by algebraic manipulation:

```
m12 = (mu1*s2+mu2*s1)/(s1+s2)
s12 = s1*s2/(s1+s2)
newnormal = N(x,m12,s12)
```

We have that

$$
\begin{align*}
\mu_{12} & =\frac{\mu_{1} \sigma_{2}^{2}+\mu_{2} \sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \tag{2}\\
\sigma_{12}^{2} & =\frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \tag{3}
\end{align*}
$$

However, to obtain the full product, we need to add several normalization factors:

```
direct = 1./Z(s1)*1./Z(s2)*\
    exp(- (mu1-mu2) ^2/2/(s1+s2))*Z(s12)*newnormal
```

Which is

$$
\begin{equation*}
\frac{\left.0.500000000000000 e^{\left(-\frac{\left(x-\frac{\mu_{1} \sigma_{2}^{2}+\mu_{2} \sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)^{2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}{2 \sigma_{1}^{2} \sigma_{2}^{2}}-\frac{\left(\mu_{1}-\mu_{2}\right)^{2}}{2\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}\right.}\right)}{\sqrt{\pi \sigma_{1}^{2}} \sqrt{\pi \sigma_{2}^{2}}} \tag{4}
\end{equation*}
$$

Let's finally check that this is correct, by checking the value of the ratio:

```
final = (product/direct).full_simplify()
```

And the output is 1 !

