Bayesian odds ratio of two multinomials

Luis Pedro Coelho

December 18, 2012

The equations in this derivation have not been checked by automatic software. Unfortunately, I cannot think of a way of checking them easily as I have not found a piece of software which understood Dirichlet integrals in k dimensions.

We are given two datasets \mathcal{D}_{1} and \mathcal{D}_{2}, which are completely summarised as the output of a multinomial of size k. The question is: were these two datasets produced by a single multinomial or two different multinomial? We will call the single multinomial hypothesis \mathcal{H}_{1} and the two multinomial hypothesis \mathcal{H}_{2}. If we call \mathcal{D} the complete data, we are enquiring after:

$$
\begin{equation*}
\frac{P\left(\mathcal{H}_{1} \mid \mathcal{D}\right)}{P\left(\mathcal{H}_{2} \mid \mathcal{D}\right)} \tag{1}
\end{equation*}
$$

If we assume a prior with the same value for both hypothesis, this is equivalent to

$$
\begin{equation*}
\frac{P\left(\mathcal{D} \mid \mathcal{H}_{1}\right)}{P\left(\mathcal{D} \mid \mathcal{H}_{2}\right)} . \tag{2}
\end{equation*}
$$

We will also assume that the two datasets are independent in the case of a single multinomial, i.e.,

$$
\begin{equation*}
\frac{P\left(\mathcal{D} \mid \mathcal{H}_{1}\right)}{P\left(\mathcal{D} \mid \mathcal{H}_{2}\right)}=\frac{P\left(\mathcal{D}_{1}, \mathcal{D}_{2} \mid \mathcal{H}_{1}\right)}{P\left(\mathcal{D}_{1}, \mathcal{D}_{2} \mid \mathcal{H}_{2}\right)}=\frac{P\left(\mathcal{D}_{1} \mid M\right) P\left(\mathcal{D}_{2} \mid M\right)}{P\left(\mathcal{D}_{1}, \mathcal{D}_{2} \mid M\right)}, \tag{3}
\end{equation*}
$$

where M is the multinomial model. We now consider what form $P\left(\mathcal{D}_{i} \mid M\right)$ takes. The data is simply a vector of counts, which we will call \vec{x}. We need to integrate over all possible multinomials, which are in turn defined by a vector $\vec{\theta}$ in the simplex defined by $\sum_{i} \theta_{i}=1$. We use a Dirichlet prior, which needs a new parameter $\vec{\alpha}$.

$$
\begin{align*}
P(\vec{c} \mid \alpha, M) & =\int P(\vec{c} \mid \vec{\theta}, M) P(\vec{\theta} \mid M) d \theta \tag{4}\\
& =\frac{1}{D(\vec{\alpha})} \int\left(\Pi_{i} \theta_{i}^{c_{i}}\right)\left(\Pi_{i} \theta_{i}^{\alpha_{i}-1}\right) d \theta \tag{5}\\
& =\frac{1}{D(\vec{\alpha})} \int \Pi_{i} \theta_{i}^{c_{i}+\alpha_{i}-1} d \theta \tag{6}\\
& =\frac{D(\vec{c}+\vec{\alpha})}{D(\vec{\alpha})}, \tag{7}
\end{align*}
$$

where D is the Dirichlet normalizing constant:

$$
\begin{equation*}
D(\vec{\alpha})=\frac{\Pi_{i} \Gamma\left(\alpha_{i}\right)}{\Gamma\left(\sum_{i} \alpha_{i}\right)} \tag{8}
\end{equation*}
$$

which is also sometimes called the multinomial Beta (but too many functions are already called Beta).
Back to (3). For convenience, I will call the vector of counts from \mathcal{D}_{1}, \vec{x} and that from \mathcal{D}_{2}, \vec{y}. (3) expands to

$$
\begin{equation*}
\frac{D(\vec{x}+\alpha)}{D(\vec{\alpha})} \cdot \frac{D(\vec{y}+\alpha)}{D(\vec{\alpha})} \cdot \frac{D(\vec{\alpha})}{D(\vec{x}+\vec{y}+\alpha)}=\frac{D(\vec{x}+\vec{\alpha}) D(\vec{y}+\vec{\alpha})}{D(\vec{x}+\vec{y}+\vec{\alpha}) D(\vec{\alpha})} . \tag{9}
\end{equation*}
$$

With another another assumption, namely that $\alpha_{i}=0$ (and $D(\vec{\alpha})=1$, which implies an improper prior), we can get a nicer expression:

$$
\begin{equation*}
\frac{P\left(\mathcal{D} \mid \mathcal{H}_{1}\right)}{P\left(\mathcal{D} \mid \mathcal{H}_{2}\right)}=\frac{D(\vec{x}) D(\vec{y})}{D(\vec{x}+\vec{y})} \tag{10}
\end{equation*}
$$

If we further define the Beta function B as:

$$
\begin{equation*}
B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}, \tag{11}
\end{equation*}
$$

then (10) become:

$$
\begin{equation*}
\frac{P\left(\mathcal{D} \mid \mathcal{H}_{1}\right)}{P\left(\mathcal{D} \mid \mathcal{H}_{2}\right)}=\frac{D(\vec{x}) D(\vec{y})}{D(\vec{x}+\vec{y})}=\frac{\Pi_{i} B\left(x_{i}, y_{i}\right)}{B\left(n_{x}, n_{y}\right)}, \tag{12}
\end{equation*}
$$

where $n_{x}=\sum_{i} x_{i}$ and $n_{y}=\sum_{i} y_{i}$.

