Integral of the product of two Gaussians

Luis Pedro Coelho

April 19, 2013

Abstract

What is this? Since there are a few hits of people who download these files directly from a Google results page, instead of from my website, I add here a small explanation: These files contain derivations which I often use and, before I wrote them down cleanly, would often make small mistakes on (like leaving off a minus sign or such). They are also automatically checked with sage, so that the computer assures that there were no mis-steps in the derivation. This is also why you see code in the derivation instead of just the equations. This is run by sage.


```
x = var('x')
mu1 = var('mu1')
mu2 = var('mu2')
s1 = var('s1', latex_name=r'\sigma_1^2', domain='positive')
s2 = var('s2', latex_name=r'\sigma_2^2', domain='positive')
assume(s1 > 0)
assume(s2 > 0)
def Z(s):
    return sqrt(2*pi*s)
def N(x, m, s):
    return 1./Z(s) * exp(- (x-m) ^2 /(2*s))
product = N(x, mu1, s1) * N(x,mu2,s2)
```

We want to be able to compute:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{0.500000000000000 e^{\left(-\frac{\left(\mu_{2}-x\right)^{2}}{2 \sigma_{2}^{2}}-\frac{\left(\mu_{1}-x\right)^{2}}{2 \sigma_{1}^{2}}\right)}}{\sqrt{\pi \sigma_{1}^{2}} \sqrt{\pi \sigma_{2}^{2}}} d x \tag{1}
\end{equation*}
$$

or, in sage:

```
Nint = integral(product,x,-infinity,infinity)
```

I assert that this is equal to:

```
s12 = s1*s2/(s1+s2)
Ndirect = Z(s12)/(Z(s1)*Z(s2)) * exp(- (mu1-mu2)^2/2/(s1+s2))
```

where

$$
\begin{align*}
\sigma_{12}^{2} & =\frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \tag{2}\\
N & =\frac{\sqrt{\frac{\pi \sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \sqrt{2} e^{\left(-\frac{\left(\mu_{1}-\mu_{2}\right)^{2}}{2\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}\right)}}}{2 \sqrt{\pi \sigma_{1}^{2}} \sqrt{\pi \sigma_{2}^{2}}} \tag{3}
\end{align*}
$$

Let us check the ratio again

```
ratio = (Nint/Ndirect)
ratio = ratio.simplify_full()
```

The ratio is 1 .
We can also write the function above as

```
Ngaussian1 = Z(s12)*Z(s1+s2)/(Z(s1)*Z(s2)) *N(mu1,mu2,s1+s2)
```

The products of all the $Z \mathrm{~s}$ is going to simplify to 1 :

```
Zs = Z(s12)*Z(s1+s2)/(Z(s1)*Z(s2))
Zs = Zs.simplify_full()
```

Results in 1.
So, we get our final result:

```
Ngaussian = N(mu1,mu2,s1+s2)
ratio = (Nint/Ngaussian)
ratio = ratio.simplify_full()
```

The ratio is, again, 1 .
Therefore:

$$
\begin{equation*}
\int N\left(x \mid \mu_{1}, \sigma_{1}^{2}\right) N\left(x \mid \mu_{2}, \sigma_{2}^{2}\right) d x=N\left(\mu_{1} \mid \mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)=N\left(\mu_{2} \mid \mu_{1}, \sigma_{1}^{2}+\sigma_{2}^{2}\right) \tag{4}
\end{equation*}
$$

