Introduction to Python Programming

Luis Pedro Coelho
§
On the web: http://luispedro.org
On twitter: @luispedrocoelho

European Molecular Biology Laboratory

June 16, 2015
Let’s digress for a moment discussing the language...
Python was started in the late 80’s.

- It was intended to be both easy to teach and industrial strength.
- It is (has always been) open-source.
- In the last 10 years, it has become one of the most widely used languages (top 10).
The current versions of Python are 2.7 and 3.4
This class assumes you have 2.6–2.7
There are some small differences when compared to version 3.x
What is a Computer?

1. Memory
2. Processor
3. Magic
1. Objects
2. Operations on objects
3. Magic
print "Hello World"
Running Python

1. From a file
2. Interactively
Computer Program

```python
print 'Hello World'
```
Let me show you a demonstration...
More Complex Example

What is 25 times 5?
What is 25 times 5?

```python
print 25 * 5
```
a = 2
b = 3
c = a + b
d = 5
print a + d
Blackboard demonstration
if `<condition>`:
 `<statement 1>`
 `<statement 2>`
else:
 `<statement 3>`
print 'Before testing...'
if 3.3*9.2 > 30:
 print 'Greater than 30'
else:
 print 'Smaller or equal'
print 'After'
print 'Before testing. . .'
if 3.3*9.2 > 31:
 print 'Greater than 31'
elif 3.3*9.2 > 30:
 print 'Greater than 30'
else:
 print 'Smaller or equal'
print 'After'
print 'Before testing. . .'
v = 3.3*9.2
if v > 31:
 print 'Greater than 31'
elif v > 30:
 print 'Greater than 30'
else:
 print 'Smaller or equal'
print 'After'
Lists

```python
students = [ 'Luis', 'Mark', 'Rita']
print students[0]
print students[1]
print students[2]
```
Loops

```
students = ['Luis', 'Mark', 'Rita', ...]

for st in students:
    print st
```
Example

```
values = [0.11, -0.23, -0.16, 0.18, 0.23, 0.19]
```

Example

values = [0.11, -0.23, -0.16, 0.18, 0.23, 0.19]

sum = 0
for v in values:
 sum = sum + v
print sum
Exercise

- How do you obtain the number of elements in a list?
- Use this to compute the mean of a list of numbers
Example

```python
values = [0.11, -0.23, -0.16, 0.18, 0.23, 0.19]

sum = 0.0
sum2 = 0.0
for v in values:
    sum = sum + v
    sum2 = sum2 + v * v
mu = sum/len(values)
mu2 = sum2/len(values)
print 'Average: {0}'.format(mu)
print 'Std Dev: {0}'.format(mu2 - mu*mu)
```
Example

```
values = [0.11, -0.23, -0.16, 0.18, 0.23, 0.19]

sum = 0.0
sum2 = 0.0
for v in values:
    sum += v
    sum2 += v * v

mu = sum/len(values)
mu2 = sum2/len(values)
print 'Average: {0}'.format(mu)
print 'Std Dev: {0}'.format(mu2 - mu*mu)
```
Example

```python
values = [0.11, -0.23, -0.16, 0.18, 0.23, 0.19]

mu = 0.0
mu2 = 0.0
for v in values:
    mu += v
    mu2 += v * v

mu /= len(values)
mu2 /= len(values)
print 'Average: {0}'.format(mu)
print 'Std Dev: {0}'.format(mu2 - mu*mu)
```
Example

```python
values = [0.11, -0.23, -0.16, 0.18, 0.23, 0.19]

mu = 0.0
mu2 = 0.0
for v in values:
    mu += v
    mu2 += v * v

mu /= len(values)
mu2 /= len(values)
print 'Average: {0}'.format(mu)
print 'Std Dev: {0}'.format(mu2 - mu*mu)
```
Exercise

Adapt the code to ignore negative numbers.
Adapt the code to ignore negative numbers.

```python
values = [0.11, -0.23, -0.16, 0.18, 0.23, 0.19]

mu = 0.0
mu2 = 0.0
n = 0.0
for v in values:
    if v >= 0.0:
        mu += v
        mu2 += v * v
    n += 1

mu /= n
mu2 /= n
print 'Average: {0}'.format(mu)
print 'Std Dev: {0}'.format(mu2 - mu*mu)
```
Greatest Common Divisor (Euclid’s Method)

\[
gcd(a, b) = \begin{cases}
a & \text{if } b = a \\
gcd(a - b, b) & \text{if } a > b \\
gcd(a, b - a) & \text{o.w.}
\end{cases}
\]
Greatest Common Divisor (Euclid’s Method)

\[gcd(a, b) = \begin{cases}
 a & \text{if } b = a \\
 gcd(a - b, b) & \text{if } a > b \\
 gcd(a, b - a) & \text{o.w.}
\end{cases} \]

\[a = 9344 \]
\[b = 6497 \]

```python
while a != b:
    if a > b:
        a, b = a - b, b
    else:
        a, b = a, b - a
print a
```
Python So Far

Python

1. Basic types: int, float, list
2. Control flow: for, while, if, else, elif
List Indexing

```python
students = [ 'Luis', 'Rita', 'Sabah', 'Grace']
print students[0]
print students[1:2]
print students[1:]
print students[-1]
print students[-2]
```
Tuples (I)

\[
A = (0, 1, 2) \\
B = (1,)
\]

```
print A[0]
print len(B)
```
Tuples are like immutable lists.
Dictionaries

- Dictionaries are associative arrays.

```python
gene2ensembl = {}
gene2ensembl[ 'SMAD9' ] = 'ENSG00000120693'
gene2ensembl[ 'ZNF670' ] = 'ENSG00000135747'

print gene2ensembl[ 'SMAD9' ]
```
Dictionary Methods

gene2expression = {
 'SMAD9': 12.3,
 'ZNF670': 4.3,
}

print len(gene2expression)
print gene2ensembl.keys()