Numpy Stack

Luis Pedro Coelho
§
On the web: http://luispedro.org
On twitter: @luispedrocoelho

European Molecular Biology Laboratory

June 16, 2014
- Numeric (1995)
- Numarray (for large arrays)
- scipy.core (briefly, around 2005)
- numpy (2005)
Currently

- numpy 1.6
- de facto standard
- very stable
numpy.array or numpy.ndarray.

Multi-dimensional array of numbers.
import numpy as np
A = np.array([[
 [0,1,2],
 [2,3,4],
 [4,5,6],
 [6,7,8]]])
print A[0,0]
print A[0,1]
print A[1,0]
import numpy as np
A = np.array([
 [0,1,2],
 [2,3,4],
 [4,5,6],
 [6,7,8]]
)
print A.shape
print A.size
Some Array Functions

...

```python
print A.max()
print A.min()
```

- `max()`: maximum
- `min()`: minimum
- `ptp()`: spread (max - min)
- `sum()`: sum
- `std()`: standard deviation
- ...

Luis Pedro Coelho (luis@luispedro.org) (EMBL) ⋆ Numpy Stack ⋆ June 16, 2014 (7 / 26)
Other Functions

- np.exp
- np.sin
- ...

All of these work **element-wise**!
import numpy as np
A = np.array([0, 1, 2, 3])
B = np.array([1, 1, 2, 2])

print A + B
print A * B
print A / B
Broadcasting

Mixing arrays of different dimensions

```python
import numpy as np
A = np.array(
    [[0, 0, 1],
     [1, 1, 2],
     [1, 2, 2],
     [3, 2, 2]],
)
B = np.array([[2, 1, 2]])

print A + B
print A * B
```
Broadcasting

Special case: scalar.

```python
import numpy as np
A = np.arange(100)
print(A + 2)
A += 2
```
numpy.ndarray is a homogeneous array of numbers.

Types

- Boolean
- integers
- floating point numbers
- ...

Luis Pedro Coelho (luis@luispedro.org) (EMBL)

Numpy Stack

June 16, 2014
Object Construction

```python
import numpy as np
A = np.array([0, 1, 1], float)
A = np.array([0, 1, 1], bool)
```
Reduction

```python
A = np.array([
    [0, 0, 1],
    [1, 2, 3],
    [2, 4, 2],
    [1, 0, 1]]
)
print A.max(0)
print A.max(1)
print A.max()
```

prints

```
[2,4,3]
[1,3,4,1]
4
```

The same is true for many other functions.
import numpy as np
A = np.array([[
 [0, 1, 2],
 [2, 3, 4],
 [4, 5, 6],
 [6, 7, 8]]

print A[0]
print A[0].shape
print A[1]
print A[:, 2]
Two minute break

- Talk to your neighbours
- Play around in Python
- Ask questions
import numpy as np

A = np.array([[0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8]])

B = A[0]

B[0] = -1

print A[0,0]
def double(A):
 A *= 2

A = np.arange(20)
double(A)
Pass is By Reference

```python
def double(A):
    A *= 2

A = np.arange(20)
double(A)

A = np.arange(20)
B = A.copy()
```
A = np.array([-1, 0, 1, 2, -2, 3, 4, -2])
print (A > 0)
A = np.array([-1, 0, 1, 2, -2, 3, 4, -2])
print((A > 0) & (A < 3)).mean()

What does this do?
Logical Indexing

\[A[A < 0] = 0 \]

or

\[A *= (A > 0) \]
Logical Indexing

```
print 'Mean of positives', A[A > 0].mean()
```
Some Helper Functions

Constructing Arrays

\[
A = \text{np.zeros((10, 10), int)} \\
B = \text{np.ones(10)} \\
C = \text{np.arange(100).reshape((10, 10))} \\
\ldots
\]

Multiple Dimensions

\[
\text{img} = \text{np.zeros((1024, 1024, 3))}
\]
http://docs.scipy.org/doc/
Matplotlib is a plotting library for Python.

```python
import pylab
import numpy as np
X = np.linspace(-4, +4, 1000)
pylab.plot(X, np.exp(-X**2))
pylab.xlabel(r'$x$')
pylab.ylabel(r'$\exp(-x^2)$')
pylab.savefig('gaussian.pdf')
```

http://matplotlib.sf.net/
\[\exp(-x^2) \]