Numpy

Luis Pedro Coelho

Programming for Scientists

October 22, 2012
Historical

- Numeric (1995)
- Numarray (for large arrays)
- scipy.core (briefly, around 2005)
- numpy (2005)
Currently

- numpy 1.6
- *de facto* standard
- very stable
Basic Type

numpy.array or numpy.ndarray.

Multi-dimensional array of numbers.
import numpy as np
A = np.array([
 [0, 1, 2],
 [2, 3, 4],
 [4, 5, 6],
 [6, 7, 8]]
)
print A[0, 0]
print A[0, 1]
print A[1, 0]
Some Array Properties

```python
import numpy as np
A = np.array([
    [0, 1, 2],
    [2, 3, 4],
    [4, 5, 6],
    [6, 7, 8]
])
print(A.shape)
print(A.size)
```
Some Array Functions

\[\text{print } A.\text{max}() \]
\[\text{print } A.\text{min}() \]

- max(): maximum
- min(): minimum
- ptp(): spread (max - min)
- sum(): sum
- std(): standard deviation
- ...
Other Functions

- `np.exp`
- `np.sin`
- ...

All of these work element-wise!
Arithmetic Operations

```python
import numpy as np
A = np.array([0, 1, 2, 3])
B = np.array([1, 1, 2, 2])

print A + B
print A * B
print A / B
```
Broadcasting

Mixing arrays of different dimensions

```python
import numpy as np

A = np.array([
    [0, 0, 1],
    [1, 1, 2],
    [1, 2, 2],
    [3, 2, 2]
])

B = np.array([2, 1, 2])

print A + B
print A * B
```
Special case: scalar.

```python
import numpy as np
A = np.arange(100)
print A + 2
A += 2
```
numpy.ndarray is a homogeneous array of numbers.

Types

- Boolean
- integers
- floating point numbers
- ...

import numpy as np
A = np.array([0, 1, 1], float)
A = np.array([0, 1, 1], bool)
Reduction

```
A = np.array([
    [0, 0, 1],
    [1, 2, 3],
    [2, 4, 2],
    [1, 0, 1]]
)
print A.max(0)
print A.max(1)
print A.max()
```

prints

```
[2,4,3]
[1,3,4,1]
4
```

The same is true for many other functions.
import numpy as np

A = np.array([[0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8]])

print A[0]
print A[0].shape
print A[1]
print A[:, 2]
Two minute break

- Talk to your neighbours
- Play around in Python
- Ask questions
import numpy as np
A = np.array([[0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8]])
B = A[0]
B[0] = -1
print A[0, 0]
Pass is By Reference

```python
def double(A):
    A *= 2

A = np.arange(20)
double(A)
```
def double(A):
 A *= 2

A = np.arange(20)
double(A)

A = np.arange(20)
B = A.copy()
Logical Arrays

A = np.array([-1, 0, 1, 2, -2, 3, 4, -2])
print (A > 0)
A = np.array([-1, 0, 1, 2, -2, 3, 4, -2])
print((A > 0) & (A < 3)).mean()

What does this do?
Logical Indexing

\[A[A < 0] = 0 \]

or

\[A ^= (A > 0) \]
Logical Indexing

```python
print 'Mean of positives', A[A > 0].mean()
```
Some Helper Functions

Constructing Arrays

\[
A = \text{np.zeros}((10, 10), \text{int}) \\
B = \text{np.ones}(10) \\
C = \text{np.arange}(100).\text{reshape}((10, 10)) \\
\ldots
\]

Multiple Dimensions

\[
\text{img} = \text{np.zeros}((1024, 1024, 3))
\]
http://docs.scipy.org/doc/
Matplotlib is a **plotting library** for Python.

```python
import pylab
import numpy as np
X = np.linspace(-4, +4, 1000)
pylab.plot(X, np.exp(-X**2))
pylab.xlabel(r'$x$')
pylab.ylabel(r'$\exp(-x^2)$')
pylab.savefig('gaussian.pdf')
```

http://matplotlib.sf.net/
Matplotlib Example

\[\exp(-x^2) \]

Luis Pedro Coelho (Programming for Scientists) * Numpy * October 22, 2012 (26 / 26)