Introduction to Python Programming

Luis Pedro Coelho

Programming for Scientists

October 22, 2012
Let’s digress for a moment discussing the language...
Python was started in the late 80’s. It was intended to be both easy to teach and industrial strength. It is (has always been) open-source. In the last 10 years, it has become one of the most widely used languages (top 10).
The current versions of Python are 2.7 and 3.3.

This class assumes you have 2.6–2.7.

There are some small differences when compared to version 3.x.
What is a Computer?

1. Memory
2. Processor
3. Magic
1 Objects
2 Operations on objects
3 Magic
print "Hello World"
Running Python

1. From a file
2. Interactively
helloworld.py

```python
print 'Hello World'
```
Running a Program

1. Shell
2. IDE
Let me show you a demonstration...
More Complex Example

What is 25 times 5?
More Complex Example

What is 25 times 5?

\texttt{print 25 * 5}
name = 2
other = 3
yetanother = name + other
name = 5
print yetanother + name
Blackboard demonstration
if <condition>:
 <statement 1>
 <statement 2>
else:
 <statement 3>
Lists

students = ['Luis', 'Mark', 'Rita']

print students[0]
print students[1]
print students[2]
Loops

```python
students = ['Luis', 'Mark', 'Rita', ...]
for st in students:
    print st
```
Example

```python
data = [0.11, -0.23, -0.16, 0.18, 0.23, 0.19]

sum = 0.0
sum2 = 0.0
for v in data:
    sum = sum + v
    sum2 = sum2 + v * v

mu = sum/len(data)
mu2 = sum2/len(data)
print('Average: {}'.format(mu))
print('Std Dev: {}'.format(mu2 - mu*mu))
```
Example

values = [0.11, -0.23, -0.16, 0.18, 0.23, 0.19]

sum = 0.0
sum2 = 0.0
for v in values:
 sum += v
 sum2 += v * v

mu = sum/len(values)
mu2 = sum2/len(values)
print 'Average: {0}'.format(mu)
print 'Std Dev: {0}'.format(mu2 - mu*mu)
Example

values = [0.11, -0.23, -0.16, 0.18, 0.23, 0.19]

mu = 0.0
mu2 = 0.0
for v in values:
 mu += v
 mu2 += v * v

mu /= len(values)
mu2 /= len(values)
print 'Average: {0}'.format(mu)
print 'Std Dev: {0}'.format(mu2 - mu*mu)
Example

values = [0.11, -0.23, -0.16, 0.18, 0.23, 0.19]

mu = 0.0
mu2 = 0.0
for v in values:
 mu += v
 mu2 += v * v

mu /= len(values)
mu2 /= len(values)
print 'Average: {0}'.format(mu)
print 'Std Dev: {0}'.format(mu2 - mu*mu)
Exercise

Adapt the code to ignore negative numbers.
Exercise

Adapt the code to ignore negative numbers.

```python
def calculate_statistics(values):
    mu = 0.0
    mu2 = 0.0
    n = 0.0
    for v in values:
        if v >= 0.0:
            mu += v
            mu2 += v * v
            n += 1
    mu /= n
    mu2 /= n
    return (mu, mu2 - mu*mu)
```

```python
values = [0.11, -0.23, -0.16, 0.18, 0.23, 0.19]
mu, mu2 = calculate_statistics(values)
print('Average: {0}'.format(mu))
print('Std Dev: {0}'.format(mu2 - mu*mu))
```
Greatest Common Divisor (Euclid’s Method)

\[\text{gcd}(a, b) = \begin{cases}
 a & \text{if } b = a \\
 \text{gcd}(a - b, b) & \text{if } a > b \\
 \text{gcd}(a, b - a) & \text{o.w.}
\end{cases} \]
Greatest Common Divisor (Euclid’s Method)

\[
gcd(a, b) = \begin{cases}
a & \text{if } b = a \\
gcd(a - b, b) & \text{if } a > b \\
gcd(a, b - a) & \text{o.w.} \\
\end{cases}
\]

\[
a = 9344 \\
b = 6497
\]

```python
while a != b:
    if a > b:
        a, b = a - b, b
    else:
        a, b = a, b - a
print a
```
Install Python(x,y)
(or the equivalent on your platform)